Latex#

Sources#

You can find some additional information here:

Comparison#

\leq - \(\leq\), \geq - \(\geq\), \approx - \(\approx\), \neq - \(\neq\), \sim - \(\sim\).

Proofs symbols#

\forall - \(\forall\), \Leftarrow - \(\Leftarrow\), \Rightarrow - \(\Rightarrow\), \Leftrightarrow - \(\Leftrightarrow\), \boxtimes - \(\boxtimes\).

Greek alphabet#

Here is a list of the Greek alphabet and the corresponding LaTeX for each letter:

Name

LaTeX

Rendered

LaTeX

Rendered

Alpha

\alpha

\(\alpha\)

A

\(A\)

Beta

\beta

\(\beta\)

B

\(B\)

Gamma

\gamma

\(\gamma\)

\Gamma

\(\Gamma\)

Delta

\delta

\(\delta\)

\Delta

\(\Delta\)

Epsilon

\epsilon

\(\epsilon\)

E

\(E\)

Zeta

\zeta

\(\zeta\)

Z

\(Z\)

Eta

\eta

\(\eta\)

H

\(H\)

Theta

\theta

\(\theta\)

\Theta

\(\Theta\)

Iota

\iota

\(\iota\)

I

\(I\)

Kappa

\kappa

\(\kappa\)

K

\(K\)

Lambda

\lambda

\(\lambda\)

\Lambda

\(\Lambda\)

Mu

\mu

\(\mu\)

M

\(M\)

Nu

\nu

\(\nu\)

N

\(N\)

Xi

\xi

\(\xi\)

\Xi

\(\Xi\)

Omicron

o

\(o\)

O

\(O\)

Pi

\pi

\(\pi\)

\Pi

\(\Pi\)

Rho

\rho

\(\rho\)

P

\(P\)

Sigma

\sigma

\(\sigma\)

\Sigma

\(\Sigma\)

Tau

\tau

\(\tau\)

T

\(T\)

Upsilon

\upsilon

\(\upsilon\)

\Upsilon

\(\Upsilon\)

Phi

\phi

\(\phi\)

\Phi

\(\Phi\)

Chi

\chi

\(\chi\)

X

\(X\)

Psi

\psi

\(\psi\)

\Psi

\(\Psi\)

Omega

\omega

\(\omega\)

\Omega

\(\Omega\)

Note: Some rendering engines interpret special commands for symbols that are identical to modern English letters — e.g., \Alpha for the symbol $A$. However, some interpreters (including browsers) do not recognize these commands, so it is recommended to use regular characters instead.

There are some special forms for classical letters:

\varphi: \(\varphi\);\varepsilon: \(\epsilon\).

Upper excreta#

  • \tilde{ffff} - \(\tilde{ffff}\), \widetilde{ffff} - \(\widetilde{ffff}\);

  • \hat{ffff} - \(\hat{ffff}\), \widehat{ffff} - \(\widehat{ffff}\);

  • \bar{ffff} - \(\bar{ffff}\), \overline{ffff} - \(\overline{ffff}\).

Operations with sets#

  • A \in B - \(A \in B\);

  • A \subset B - \(A \subset B\);

  • A \supset B - \(A \supset B\);

  • A \subseteq B - \(A \subseteq B\);

  • A \supseteq B - \(A \supseteq B\);

  • A \cup B - \(A \cup B\);

  • A \cap B - \(A \cap B\).

Binary operators#

  • A \times B - \(A \times B\);

  • A \pm B = \(A \pm B\).

Existance#

  • \exists a - \(\exists a\);

  • \nexists a - \(\nexists a\).

Ellipses#

Ellipses is a symbol that looks like three dots in a row. They are typically used to show that some elements are omitted from the notation. These hidden elements follow a pattern that should be obvious from the explicitly stated ones.

The following tables shows typical ellipsis symbols:

Command

Rendered

Description

Example

\ldots

\(\ldots\)

Low dots are used to skip some elements of the sequnce

\(a_1, a_2, \ldots, a_n \)

\cdots

\(\cdots\)

Centered dots

\(\begin{array}{c} a_1 & a_2 & \cdots & a_n & \end{array}\)

\vdots

\(\vdots\)

Vertical dots

\(\begin{array}{ccc} a_1 \\ \vdots \\ a_2 \end{array}\)

\ddots

\(\ddots\)

Diagonal patterns

\dotsc

\(\dotsc\)

With commas

\dotsb

\(\dotsb\)

Binary operations

\dotsm

\(\dotsm\)

Multiplication

\dotsi

\(\dotsi\)

Integrals, sums

\dotso

\(\dotso\)

Miscellaneous

Vertical bar#

There is a lot of cases when vertical bars in mathematical notation can be used. And there is a set of options how you can peform that:

  • Defining conditions for sets \(\{x \in \mathbb{R} \mid x>0 \}\).

  • Conditional probability \(P(A \mid B)\).

  • It can be used as brackets for an expression; a typical expression for the Euclidean norm is \(\| A \|\).

There are few ways to create such symbol:

  • Just use | symbol: $A|B$-\(A|B\).

  • Use \mid keyword, the most typical option, create some extra spacing for symbols before and after: $A|B \mid C$- \(A|B \mid C\)

  • Use \vert keyword, I haven’t found difference with using | symbol yet: $A|B \vert C$ - \(A|B \vert C\).

  • For creating brackets as two close positioned vertical lines use \|: $\|A\|$ - \(\|A\|\).

Joining case#

The following instructions are used to create a parenthesis in latex:

  • \begin{cases} <expression>  \\end{cases} - will put expression under the bracket;

  • \\ - to jump to a new line for an expression under a bracket.

For example expression:

$$\begin{cases}
      line1; \\
      line2.
\end{cases}$$

Will show markdown:

\[\begin{split}\begin{cases} line1; \\ line2. \end{cases}\end{split}\]

Expression numbers#

Using command \tag

For example:

$$\frac{\delta}{\gamma} \tag{hello}$$
\[\frac{\delta}{\gamma} \tag{hello}\]

Brakets#

Rounding#

  • Floor \lfloor a \rfloor - \(\lfloor a \rfloor\);

  • Ceil \lceil a \rceil - \(\lceil a \rceil\);

  • Note \(\lfloor 5.31 \rfloor = 5, \lfloor -5.31 \rfloor = -6, \lceil 5.31 \rceil = 6, \lceil -5.31 \rceil=-5\).

To wrap in brackets#

Expression like:

$$[\frac{\sum_i^n}{\prod_i^n}]$$

Will be interpreted like:

\[[\frac{\sum_i^n}{\prod_i^n}]\]

The problem is that a square bracket does not completely close the expression it surrounds. To fix this, you need to put the tag $\left$ before the opening bracket and $\right$ before the closing bracket. That is, the expression:

$$\left[\frac{\sum_i^n}{\prod_i^n}\right]$$

Which will be interpreted like this:

\[\left[\frac{\sum_i^n}{\prod_i^n}\right]\]

You can even use it with types of parentheses defined by other keywords. For example expression:

\left\lceil \frac{a}{b} \right\rceil

will look like:

\[\left\lceil \frac{a}{b} \right\rceil\]

Matrices#

To create the matrix, you will need:

  • Opening and closing brackets \left(, \right);

  • The \betting{array} \end{array} instruction will allow you to create table elements inside the bracket. (in order to start the wod after opening \begin{array}, you will have to put \\);

  • The & symbol is used to move to the next element of the string;

  • To move to the next line element, the \\ is used;

  • To fill in the intermediate places between matrix elements, you may need to use multipo dots:

    • Horizontal dots \cdots - \(\cdots\);

    • Vertical dots \vdots - \(\vdots\);

    • Dianal polynomial dots - \(\ddots\):

Thus an entry of the form:

$$
\left(\begin{array}{cccc}
    a_{11} & a_{12} & \cdots & a_{1n} \\ 
    a_{21} & a_{22} & \cdots & a_{2n} \\ 
    \vdots & \vdots & \ddots & \vdots \\
    a_{n1} & a_{n2} & \cdots & a_{nn} 
\end{array}\right)
$$

Will allow you to form an expression of the form:

\[\begin{split} \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right) \end{split}\]

Letters with empty space#

Usually used to denote moieties. To write a letter in this way, use the command \mathbb{...}.

$$\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz}$$- \(\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz}\)